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ABSTRACT

Leith has suggested that climatic response to change in external forcing parameters of the climate system
may be estimated via the fluctuation-dissipation theorem (FDT). The method, which uses the natural
fluctuations of the atmosphere to probe its dynamics, is tested here using a twenty-variable truncation
model of the barotropic vorticity equation. Dissipative terms are added to the equations, so that the model
is pushed away from the region where it is expected to satisfy the FDT. It is found that, even though the
FDT is no longer satisfied in every detail, the FDT continues to provide an excellent estimate of the

climatic sensitivity of the model.

1. Introduction

Leith (1975, 1978) has proposed a method for
determining climatic sensitivity to influences exter-
nal to the atmospheric system from observations of
the natural variability of the atmosphere. As a help-
ful though not strictly parallel example of the idea,
consider a mass oscillating suspended at the end of a
spring. Letits ‘‘climate’’ be its average height above
the ground. Its ‘‘climatic sensitivity’’ is a measure
of how far the midpoint of the oscillations would
sink if, say, we were to increase the gravitational
force acting on the mass. This depends on how elastic
the spring is. But the elasticity of the spring can be
determined by observing the period of oscillation of
the mass, without interfering with its motion ex-
perimentally. We are therefore able to infer the
““climatic sensitivity’’ of the mass and spring system
by observing its undisturbed oscillations.

It will be convenient for our discussion to intro-
duce here some of Leith’s (1975) notation. Let us
denote by {x,(#)} the collection of dynamical vari-
ables describing the atmosphere. The label « indi-
cates both the nature of the variable (whether x, is
a velocity, temperature, moisture, etc.) and its
spatial position (grid-point). The atmospheric equa-
tions may be written

dxy

—_= x] + fos 1.1
o olX] + fo (L.1)
where Q, contains linear and nonlinear terms in the
variables and f, represents external forcing of the
system. Climatic means are estimated from time

averages

(xa) = % j x0)dt, (1.2)

[1}

where T is some suitably long averagmg time,
typically of the. order of decades.

We shall assume that when T is large enough the
climatic means are functions of the external forcing
alone and not dependent on initial conditions.

The sensitivity matrix M, describes shifts in the
climatic means ({x,) — (xq) + 8(x.)) due to small
changes in the external forcing (fg — f3 + 8f5):

8(xq) = 2 Mugdf. (1.3)
s

The sensitivity matrix, if known, has both predictive
value in estimating climatic change and, since we
should be able to calculate it, theoretical value as a
test of our understanding of geophysical processes.
It is not, however, easily accessible to observation,
since nature rarely provides the observer with clean,
well defined changes in external influences nor with
responses that can be confidently distinguished from
natural fluctuations of the atmospheric state. Leith
(1975) has nevertheless suggested that these same
natural fluctuations of the atmosphere may allow us
to estimate its sensitivity. By Leith’s hypothesis,
summarized below, the sensitivity matrix is given in
terms of the linear regression matrix R.4(7) for the
atmosphere [defined in (1.13)] as

M, = J Rus()dr. (1.4)
[

To explain his suggestion, we must introduce the
mean response function g.s(7):

Let x (1) be a function that satisfies (1.1) and rep-
resents the unperturbed atmosphere Suppose that
at time ¢ = ¢, an infinitesimal kick is given to vari-
able xg, produced by an infinitesimal perturbation
in the forcing f,,(z), which we may write as
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8, (1) = €b(t — t,), (1.5)

where € is infinitesimal. Let x,’(z) be the new
solution to (1.1) with this change in the forcing. The
difference between the perturbed and the unper-
turbed solutions is described by the impulse re-
sponse function

X (1) = x4(1) = 8x4(1) = un(t,t0).  (1.6)

The impulse response function in general depends
on x4(#), and by definition must satisfy g.s(7¢,20)
= 80‘3 and éag(t,to) =0forr < to.

The impulse response function may be used to
construct the linear response 8x,(#) to any perturba-
tion 8 f5(2):

dxg(t) = X

j Bt f 1)t (1T)
B —®

In particular, if §f5(¢) represents a constant shift in
the external forcing,

8fs(t) = 8fp, 1.8

then the climatic response, combining (1.2) and
(1.6), is

8(xg) = T~ JT dt's

0 8

¢
I dtogap(?,20)8f5

» j " drga(nISf, 1.9)

B8 Jo
where g.s(7) is the mean (linear) response function
T

Zoslr) = T-lj Gos(t, 1 — Dt

0

(1.10)

Thus we see from (1.3) and (1.9) that the sensi-
tivity matrix may be obtained from the mean re-
sponse function as

MaB=J
0

The linear regression matrix for the system R(7)
is constructed from the lagged covariance matrix

gaB(’T)d’T. (l.ll)

Uosl®) = T [ xolt + Txg(t)dr.

0

(1.12)

(Assume that (x,) = 0 for each variable for sim-

plicity.) The linear regression matrix predicts the

average relaxation of fluctuations of the system

back to the climatic mean, and is given by
R = 3 UaDU O, (1.13)

Y
where U~!(0) is the inverse of the zero-lag covari-
ance matrix.

The fluctuation-dissipation theorem (FDT), which
holds for many physical systems, states that
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8us(7) = Ry (7). (1.14)
In a system to which the theorem applies, the mean
response function to external perturbations can be
obtained by observing natural fluctuations of the
unperturbed system. Eq. (1.4) follows from (1.11)
and (1.14). The atmosphere is unfortunately not one
of the physical systems for which a rigorous proof
of (1.14) can be given, but Leith (1975) has argued
that it might nevertheless be sufficiently well satis-
fied that it could serve as a useful tool for investigat-
ing climatic sensitivities. Since recourse to rigorous
proof or to experiment is denied us, confidence in
Eq. (1.4) will probably come only with the accumu-
lation of tests using models. A given model may not
correctly predict the climatic sensitivity of the real
atmosphere, but if the characteristics of the model
are in some sense close enough to those of the atmos-
phere, success of the FDT in predicting the mean
response of the model may encourage us to trust in
the applicability of the FDT to the atmosphere. Dis-
crepant predictions may then be cause for reexamina-
tion of the physics of the model.

The FDT as proved by Leith (1975) for a system

“with two conserved quantities (e.g., energy and

enstrophy) is stated in terms of averages over an
ensemble of systems with a Gaussian probability
distribution, whereas the statement of the theorem
given here in (1.14) uses time-averaged quantities
(1.10) and (1.12). It is shown in the statistical
mechanics of conservative systems that averages
over a Gaussian-distributed ensemble of systems
and averages over time of a single system may be
substituted for each other if two conditions are met:
First, the number of variables in the system must be
large enough that the highly peaked Gaussian prob-
ability distribution may be replaced by a distribution
of systems all having the same energy (and en-
strophy, in our case); second, the equations of mo-
tion of the system must be such that the ergodicity
assumption may be invoked, so that the average
over the ensemble of systems with identical energies
(and enstrophies) may be replaced by an average
over time of the behavior of a single system with that
energy (and enstrophy). The formulation of the FDT
in terms of time-averaged quantities is.more con-
venient for us, since we intend to investigate the
usefulness of the FDT in a forced, dissipative model,
for which it would be difficult to specify a priori an
ensemble with statistics stationary in time.

We present here the results of some tests of the
FDT using a simple twenty-variable model. Al-
though the model is based on a truncated version
of the barotropic vorticity equation and omits many
of the important dynamical processes occurring in
the atmosphere, it has the advantage of allowing
us to pass from a model for which the theorem
can be proved to one for which it cannot be, simply
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by introducing dissipation and external forcing.
When the model is pushed well away from the
regime where the FDT is known to be satisfied,
statistically significant differences appear in the
detailed comparison of the response matrix and the
regression matrix, but the sensitivity matrix M,g,
which involves an integral over the regression
matrix [Eq. (1.4)], is still well predicted by the FDT.

2. The model

The model is derived from the barotropic vorticity

equation
a d
R L
ot ox

which describes the motion of a two-dimensional,
incompressible, inviscid fluid with velocity com-
ponents u(x,y,t), v(x,y,t) and vorticity {(x,y,r)
= duv/Ox — du/dy. A set of truncated equations is
derived following the classic work of Lorenz (1960).
The flow is assumed spatially periodic, and ex-
‘panded in Fourier modes

Ux,0) = 3 Uk,0) exp(ik-x),
k o

where the wavenumbers k have the discrete values

Q.1

(2.2)

2.3)

27
k = T (n.r’”y)9
n., n, are integers, and L is the periodicity length.
(Results reported here use L = 2w.) Since the

vorticity { is real, the complex Fourier amplitudes
{(k,t) are not independent:

Uk = Bk, (2.4)
The equations for  which follow from (2.1) are

(Pyds — P2a)P 2 PQ), (2.5)

d .
— k)= 3
dt p+g=k
where energy
E=1%Yk2lik| (2.6)
k
and enstrophy

F=%3 [l .7)
k

are conserved. : )
If the only non-zero variable is (r(0,1), the real
part of {(0,1), the corresponding vorticity field is

{(x) = 2{x(0,1) cosy
and the velocity field is
Cu(x) = — 20x(0,1) siny, v = 0.

If instead of L = 27 we were to use units typical of
geophysical scales, say L = 10* km and time units
T = 4 days, then unit strength in {z(0,1) (which has
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units 1/T) would correspond to zonal velocities u of
the order of 10 m s™'.

A truncated set of equations is obtained from the
infinite set (2.5) by setting all but a finite set of vari-
ables in the equations equal to zero and insisting that
they remain zero. Energy and enstrophy are still
conserved. In Lorenz’s (1960) original work, three
variables were retained. Flows periodic in time were
generated by the three equations because of the two
conservation laws. Kells and Orszag (1978) have in-
vestigated truncations with larger numbers of vari-
ables, keeping all Fourier modes {(k) for which
k% < K2.They find that when K2 is increased to 5 the
flows generated appear ergodic and have statistics
similar to the statistics that can be derived for very
large systems.

It is this model with ten complex variables {(k),
k% < 5, or twenty real variables, that we shall study
here. We investigate first how well the FDT is satis-
fied by the inviscid model. If the statistics were
obtained by averaging over a Gaussian-distributed
ensemble of runs of the model instead of from the
time average of a single run, we would expect the
FDT to be exactly obeyed by the model. Although
the FDT was not investigated by them, Kells and
Orszag (1978) show that the number of variables is
large enough and the assumption of ergodicity good
enough that time-averaged quantities agree with
ensemble-averaged predictions to a few percent (at
least for low-order statistics of the model). We may
therefore expect the time-averaged statistics of the
model to conform to the FDT to within a few percent.

The model is integrated using a fourth order Runge-
Kutta scheme, with initial conditions chosen ran-
domly but constrained to have total energy E = 7
and total enstrophy F = 20. This choice is made in
order that all of the modes be significantly excited
and that the characteristic times of evolution of the
various modes not be spread over a range of scales
differing by more than a factor of 4 or 5. The time
step is chosen small enough for energy and enstrophy
to be conserved to one part in a million over the
length of the run. '

To test the FDT, as expressed in (1.14), we require
the response matrix and the regression matrix. We
shall refer to the 20 real variables of the model as
o a=1,2,...,20, whenever identification by
wavenumber and ‘‘real’’ or ‘‘imaginary’’ is unneces-
sarily cumbersome. The covariance matrix, needed
to compute the regression matrix (1.13), is obtained
by averaging over a single run of length 7 = 4000.
Because the statistics of the system is expected to
be spatially homogeneous, the covariance matrix
U, should be diagonal. This is observed to be the
case to within expected statistical uncertainty. We
therefore compare the diagonal elements of the re-
gression matrix, which are just the correlation func-
tions
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Caa(™) = Uaa(m)/Uau(0),

to the corresponding response functions.

The response function is calculated in a manner
suggested by (1.6). A basic solution {,(¢) is followed
during the entire course of the run. At ¢ = ¢, mode
{pis perturbed by an amount € and the response func-
tiong,s(f, + 7, t,)is calculated from (1.6) as integra-
tion of the two solutions {(¢) and {,'(¢) proceeds.
At ¢ = t, the basic solution {,(¢) is again perturbed
and a new sample response function g.s(z; + 7, £5)
is calculated. This is repeated N times, with ¢,
— t, = 3. The mean response function is the average
over the N trials:

(2.8)

N
gus(7) = N71 X 8t + 7, 15).

j=1

(2.9)

The perturbation € is chosen small enough to ob-
tain a linear response.

_ Correlation functions and response functions are
graphed in Figs. 1 and 2. Because of the symmetry
of the system, all variables {(k) (real and imaginary
components) with wavenumbers of the same length
should have identical statistical properties. This is
confirmed numerically, and consequently only one
graph for each value of k2 is shown in Figs. 1 and 2.
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Fic. 1. Lagged correlation functions and mean response func-
tions for the 20-component barotropic model with energy
E = 7 and enstrophy F = 20. Correlation functions are obtained
from a sample of length T = 4000, and are averages of the cor-
relation functions of the real and of the imaginary parts of all
{(k) with given k% (k> = 1, 2). Response functions show mean
response of a variable to 286 successive kicks, separated 3 units
of time apart. Error bars are estimated standard deviations of
the mean, and are explained in the text.
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Correlation
function C (1)

Response
function g(T)

F1G. 2. As in Fig. 1 except for k? = 4, 5.

The correlation functions shown are averages over
all variables with the same k2 and are estimated to be
accurate to +0.01 or better. The error bars on the
response functions indicate the uncertainty in g,(7)
due to finite sample size, estimated as

N
{IN(N = DI"" X [8aslt; + 75 85)

Jj=1

— 8us(MP}H. (2.10)

Since neighboring solutions diverge exponentially
with time, the error in g.s(7) also grows exponen-
tially with 7.

The agreement between the correlation functions
and the response functions is excellent. This is en-
couraging, but, as discussed earlier, not entirely
surprising. With this experience in hand we are
ready to turn to a situation more like the real atmos-
phere, where the FDT cannot be proved.

3. Forced, dissipative model

The viscous and forcing terms in the atmospheric
equations prevent a rigorous proof of the validity of
the FDT for the atmosphere. Leith (1975) has never-
theless argued that it might still provide an adequate
estimate of the sensitivity of the atmosphere to ex-
ternal changes. There is unfortunately very little in
the way of direct numerical evidence on the subject.
In order to obtain some impression of how useful the
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TABLE 1. Means and variances of selected variables for
the forced, dissipative model. The characteristic time 7, is de-
fined in (3.7).

Variable (L ((La = (Lu))®) Ta

_ZR(O,IZI 0.603 = 0.017 1.08 + 0.018 0.65 = 0.05
(-1, 1 —0.058 = 0.044 4.05 = 0.09 1.17 = 0.12
_4(0,2) 0.032 + 0.020 2.10 = 0.03 - 0.47 = 0.03
(-1, 2) 0.009 + 0.013 1.356 = 0.015 0.32 = 0.02

FDT might be when the system studied in Section 2
is pushed well away from the regime where the FDT
is known to apply, the system is modified by adding
viscous and forcing terms to Egs. (2.5):

d . .

E {(k) = nonlinear terms — v(k){(k) + F(k). (3.1)

Energy and enstrophy are no longer conserved.
The forces F(k) are all set equal to zero except for

k = (0,1), for which we choose

F(0,1) = 1.0. 3.2

This introduces a Stress on the fluid in the x direction’

proportional to siny. Usual choices for the viscosities
v(k), as a constant independent of k2, or increasing
with k%, prove unsatisfactory for the model. The
solution {(¢) is always observed numerically to re-
lax to a steady state. A stability analysis of the model
confirms this. In order to augment the instabilities
of the model so that a turbulent flow is maintained,
the viscosities for the modes with k2 = 2 and k2 = 4
are made negative. This can be imagined as an at-
tempt to. mimic the contributions from baroclinic
instabilities in the real atmosphere, although these
generally operate at higher wavenumbers. With the
choice

wk2=1)=vk*=5) = 1.0 ] 3.3)

v(k? = 2) = v(k® = 4) = -0.6

the flow is turbulent, lagged correlations decay on a
time scale of order 1, and the statistics of the flow do
not seem to be qualitatively sensitive to the precise
values of the viscosities. Energies of the various
modes are maintained well away from equiparti-
tion values.

Statistics for the system are gathered from a run
of length T = 5000. Means and variances for some
of the variables are given in Table 1. Under the
action of the externally imposed stress, a mean flow
in the x-direction develops proportional to siny. In
the geophysical units proposed in Section 2, maxi-
mum mean zonal winds are of the order of 6 m s™1.
Estimated errors are computed as in Leith (1973).
Denoting by o{({,)] the expected error in the mean
(¢,),the estimated standard deviation of the meanis

(L)) = QralT){Le2)es (3.4
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where the subscript ¢ indicates variance about

the mean,
<.€a2>c = <_(€u - <€a>)2)’

and the estimated standard deviation of the vari-

ance is
T?[(L) ] = QT /(LD -

The characteristic time 7, for a given variable
L, is
-
0

where C,, is the lagged correlation function defined
in (2.8). The characteristic times 7, must be esti-
mated from a finite sample of length 7. It is not
difficult to show that if the true (T — =) correlation
function decays exponentially as exp(—7/7,), and the
variables {, have Gaussian statistics, then replac-
ing the upper integration limit in (3.7) with a finite
cutoff 7, will yield an estimate of 7, i.e.,

JTL
0

= (4TL /T) Taz .

(3.5)

(3.6)

Coom)dT, 3.7

Coolr)dT, (3.8)

Ty =

with uncertainty

o?l7dl 3.9)

This error increases with 7,. The cutoff 7, must
therefore be chosen as small as possible, but large
enough to encompass the range of 7 for which C(7)
is significantly different from zero. The errors listed
in Table 1 for the characteristic times are estimated
in this manner.

Graphs of the correlation functions C,.(7) for the
four variables in Table 1 are shown as smooth curves
in Figs. 3 and 4. The correlation functions have an
estimated error of +0.015 or less. Regression
matrices R(7) were also computed and found to be
identical to C.(7) to within statistical uncertainty.
Off-diagonal correlations are small, in spite of the
spatial inhomogeneity imposed on the system by the
external force. This may be explained by the rela-
tively small energy input from the forcing compared
to that generated by the instability of the modes with
negative viscosities (see Table 2).

To test the FDT, the response function is ob-
tained for each of the four variables listed in Table 1.
The mean responses g,.(7) are plotted in Figs. 3 and 4
with error bars indicating the estimated standard
deviations of the means. As before, the errors grow
exponentially.

It is evident that in this case there are statistically
significant deviations of the response curve from the
lagged correlation curve. However, the correlation
functions still approximate the response functions to
within 25% over the range of T where statistical un-
certainty in the response function is not so large as
to make the comparison uninformative.
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FiG. 3. Lagged correlation functions and mean response func-
tions for the 20-variable model with forcing and dissipative terms
added, for variables {(0,1) and {g(—1, 1). Correlation functions
are obtained from a sample of length T = 5000. Their estimated
error is less than 0.015. Response functions are averages over
responses to 227 successive impulsive kicks.

The most important use of the FDT is in estimating
the sensitivity matrix M, to predict shifts in climatic
means via Eq. (1.3). It is therefore interesting to
compare the predicted shift in the climatic mean of
the model, obtained using the FDT, to the actual
shift under a change in the external stress acting on
the model. The diagonal elements of the sensitivity
matrix are predicted to be

M, = j goa(r)dr

0

-[
-

= Tas

Roa(m)dr

Coo(T)dT

where the first equation is from (1.11), the second
equality assumes the FDT, and the third approximate
equality is possible because of the very small off-
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FIG. 4. As in Fig. 3, except for variables §(0,2) and (-1, 2).

diagonal correlations observed for the systems. The
final equality follows from the definition (3.7). We
may therefore read off the predicted sensitivities
of the modes listed in Table 1 under the column
labelled 7,.

To check an FDT-estimated sensitivity, the force
F(0,1)isincreased from 1.0 to 1.5. The mean ({(0,1))
increases as a result from 0.603 to 0.886 (correspond-
ing to an increase in the zonal wind, in the geo-
physical units suggested in Section 2, from 6 m s~!to
8.9 m s7Y). The observed shift in the climatic mean is
therefore

(L) obs = 0.28 £ 0.05.

TaBLE 2. Energy budget for the forced, dissipative model.
The energy rate dE/dt is the total energy lost or gained due to the
viscosity term by all modes with a given value of k2. The deficit

~1.21 is made up by energy input from the external stress
F(0,1).

k? dE/dt (viscosity term)

-9.28
9.91
2.54

—4.38

-1.21

VAN

Total
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TABLE 3. Observed sensitivity of the forced, dissipative model
versus the sensitivity predicted by the FDT. The force F, acting
on variable {, was changed by the amount 6F,. The new mean
(L), obtained from averaging period T, substracted from the old
mean (given in Table 1), is shown as §({,). The FDT prediction
M ,.0F . is given in the last column, where M is obtained from the
integral of the lagged correlation function, given in Table 1 as 7,.

Variable Observed Predicted
la 8F, T 8(La) 3(La)
_§R(0,1) 0.5 700 0.28 = 0.05 0.33 = 0.02
&R(-1,1 0.5 700 0.55+0.14 0.58 + 0.06
_4(0,2) 0.5 700 0.21 = 0.06 0.23 = 0.02
gr(—1, 2) 0.5 700 0.16 = 0.04 0.16 = 0.01
r(—1,2) 0.25 3000 0.040 + 0.021 0.079 = 0.006

The predicted shift is given by
8(Lu)prea. = MyodF, = 7,3F,
= 0.65 x 0:5
= 0.33 = 0.02.

The agreement is excellent. Table 3 summarizes the
results of a series of experiments to determine the
sensitivity of the model climate to the external force
acting on each of the variables listed in Table 1.!
The observed sensitivities are well predicted by the
FDT over a range of nearly a factor of four.

4. Discussion

The model tests described here serve two pur-
poses. They indicate that useful information about
the application of the FDT to sensitivity studies can
be obtained using models with relatively small num-
bers of variables. The models must, of course, be de-
tailed enough to describe dynamical fluctuations of
the atmosphere. The tests also offer considerable en-
couragement for further studies of the use of the
FDT, since, in the cases investigated here, the
theorem provides excellent estimates of the model
sensitivities even when dissipation has pushed the
system far from the regime where the theorem can
be rigorously proved. Work is already under way

. on tests of the theorem with more realistic models.

New problems will appear in testing the FDT on
larger models. The number of variables will increase
enormously, and some means of reducing the size of
the matrices involved will be needed. Leith (1975)
has suggested using empirical orthogonal functions
(EOF’s) as a basis. The usefulness of this approach

! The experiment with variable Z(—1, 2) was repeated with a
smaller force (8F = 0.25) because a substantial (three standard
deviation) shift in the mean of {z(—1, 1) occurred with the larger
force. This off-diagonal response, not predicted by the FDT, was
reduced to 1.3 standard deviations at the smaller force; it may
therefore be an example of a nonlinear response of the system
which cannot be predicted by the linear sensitivity estimate ob-
tained from the FDT.
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depends on whether the lagged covariance matrix
U.s(7) has too many large, off-diagonal elements in
this representation, and on whether the external
forcing f, for which the sensitivity of the system is
being investigated can be well represented by a small
number of EOFs. The FDT analysis of large scale
atmospheric sensitivities should certainly benefit
from an approach using EOFs. Herring (1977, 1980)
has in any case suggested, on the basis of work with
turbulence closure models, that the FDT may over-
estimate response times for the small-scale dynamics
of the atmosphere, and so may be less useful as a
guide to small-scale sensitivities.

Limitation to smaller sample sizes and problems
such as handling seasonal trends in the model out-
put will complicate tests of the FDT using more
realistic models of the atmosphere. External forcing
of the atmosphere is not always constant; for in-
stance, sea-surface temperature, when considered
as external to the atmosphere, influences the atmos-
phere through couplings that fluctuate depending on
surface wind speeds, and if the FDT is to be used in
such situations, it must be verified that the fluctuat-
ing external ‘‘forces’ can be replaced by mean

quantities. None of these problems seems insur-

mountable, however, and experience gained in
making these tests will be valuable when the FDT
is applied to the real atmosphere.

The FDT offers the prospect of direct access to
climatic sensitivities without having to construct a
detailed model of the atmosphere with all of the
physics correctly accounted for. Such models will of
course still be needed even if the FDT approach is
successful, since large climatic swings will probably
not be adequately handled by linear sensitivity fore-
casts; nor will the FDT provide any of the physical
understanding that a model can bring of the processes
that underlie a climatic shift. But the FDT can also
serve as a useful diagnostic tool for models of the
atmosphere. The FDT can extract model sensitivi-
ties to a multiplicity of parameters with much more
efficiency than the usual method of estimating sensi-
tivities. The latter, straightforward method requires
that each parameter be changed by a small amount,
and that two model runs, one before and one after
the change, be compared in order to extract a sta-
tistically significant response. Since the parameter
change cannot usually be made so large as to shift
the climatic mean of the model outside the normal
range of fluctuations of the model variables (because
the physical parameterizations used in the model
may not be trustworthy outside the regime where
they were developed), long runs are required to as-
sure adequate sample sizes. When the FDT is ap-
plicable, these long multiple runs can be replaced
by a single run from which the necessary regression
statistics are collected.

Pratt (1979) and Blackmon and Lau (1980) have
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tecently compared the spectral variance of several
variables in large general circulation models to the
corresponding atmospheric data, finding that vari-
ances at low frequencies on planetary scales tend to
be significantly underestimated by the models. If the
FDT proves to be as useful a guide to climatic sen-
sitivity as it promises to be, it suggests another sort
of comparison between models and the atmosphere.
According to Eq. (1.4), the sensitivity matrix is de-
termined by an integral over lag of the regression
matrix. If we define the time-spectral covariance
matrix as

©

l-]ag(w) = J einUuB(T)dT, (4. 1)

—00

then the sensitivity matrix is given by

My =3 [/z ReUu(o = 0)
Y
+ 7t [ do Imﬁay(w)/w][U—l(T = 0l (4.2
0 .
Thus it is not the absolute variances of the model and
of the atmosphere that must agree for the model to
predict climatic change well; interpreting (4.2)
roughly, it is rather the ratio of the low-frequency
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variance to the total variance that must be accurately
reproduced by the model.
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